
J. Fluid Mech. (1997), vol. 344, pp. 335–337. Printed in the United Kingdom

c© 1997 Cambridge University Press

335

The effective film viscosity coefficients of a thin
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We derive a constitutive relation, relating the tangential stress, tangential velocity,
thickness h, and viscosity µ, for a thin layer of Newtonian fluid on top of a fluid
substrate. We find that the upper layer exerts a viscous tangential shear stress on the
lower fluid, behaving as if it were a film with a two-dimensional shear viscosity equal
to µh, and a dilatational viscosity 3µh.

For a surface film on a substrate of water, a constitutive relation (cf. Dorrestein
1951; Goodrich 1961; Miles 1967) is sometimes adopted between the tangential stress
T , the surface tension σ, and the tangential surface velocity U :

T = ∇hσ + ηs1∇h(∇h ·U ) + ηs2∇2
hU . (1)

Here, ∇h and ∇2
h are the surface gradient and Laplacian operators, and ηs1 and ηs2 are

the dilatational and shear viscosities of the film. (Dorrestein assumes that ηs1 = 0.)
The form (1) has mainly been used for very thin films or monolayers. The thickness

of such a monolayer is typically of the order of the length of the molecules constituting
the film, say 1–10 nm. Where optical interference phenomena (Newton’s rings) are
visible in a film, the thickness is, however, typically 500–1000 nm, i.e. 100–1000 times
the molecular length. For interfaces between immiscible fluids and for monolayers
the surface viscosities ηs1 and ηs2 do not seem to be simply related to the viscosities of
the bulk fluids (cf. Edwards, Brenner & Wasan 1991 §16.3).

We wish to explore the case where the film is thick enough to behave like a
Newtonian fluid, yet thin enough for the variation of the velocity field within the
film to be reasonably small. In that case it is perhaps reasonable to assume that the
surface viscosities mentioned above can be dominated by the viscous contribution
of the bulk of the fluid layer. The coefficients ηs

1,2 are probably unrelated to the
bulk viscosity of the film material, and their presence is due to molecular effects in
a film whose thickness is of molecular dimension. We believe that ηs

1,2 → 0 as the
film thickness increases, and in any case should become small in comparison with the
viscous forces. Thus we assume

ηs1,2/h� µ,

where h is the thickness of the fluid layer and µ is its dynamic viscosity, and in the
following we neglect ηs1,2.

When periodic phenomena such as surface waves (of angular frequency ω, say) are
studied, an oscillating boundary layer is created. We must assume that the thickness
of the fluid layer is less than the thickness of the boundary layer, i.e. the upper limit
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of the film thickness h that we are concerned with should satisfy

h <

(
2µ

ωρ

)1/2

, (2)

where ρ is the density of the film fluid.
We shall demonstrate that within the above limitations we obtain a constitutive

relation of the type (1), but where ηs1 and ηs2 are replaced by 3µh and µh, respectively.
We employ a coordinate system (s, r, n), where s and r are orthogonal coordinates,

parallel to the fluid surface, and n is directed upward, normal to the surface. The
surface is at n = 0 and the interface is at n = −h. We assume that the fluid velocity
(u, w) ≡ (us, ur, w) varies slowly with n, so that it can be expressed as a Taylor
expansion using coefficients depending only on s and r:

u = U + u1n+ u2n
2 + O(n3), (3a)

w = W − (∇h ·U )n− 1
2
(∇h · u1)n

2 + O(n3), (3b)

where ∇h ≡ (∂/∂s, ∂/∂r, 0) and we have used the continuity equation ∇h ·u+∂w/∂n = 0
to determine the expansion coefficients for w in terms of those for u. We have also
neglected terms of relative order κh, where κ is the mean curvature of the surface.

For 0 6 n 6 h, the viscous tangential stress T will be

T = µ

(
∂u

∂n
+ ∇hw

)
(4a)

= µ[u1 + ∇hW + n(2u2 − ∇h(∇h ·U ))], (4b)

where we have neglected O(n2) terms. The corresponding normal stress will be

N = 2µ
∂w

∂n
= 2µ(−∇h ·U − n∇h · u1). (5)

At the free surface (n = 0), we assume that we have no applied shear stress, so that
T = 0:

u1 + ∇hW = 0; (6)

and the pressure p and normal stress N are related by p − N = P − σκ, where P is
the external applied constant pressure, σ is the surface tension, and κ is the mean
curvature of the surface, so that

∇h(P − σκ) = ∇h(p−N) = ∇hp+ 2µ∇h(∇h ·U ) at n = 0. (7)

At the interface, (4b) and (6) give

T = µh(∇h(∇h ·U )− 2u2) at n = −h. (8)

The conservation of momentum parallel to the surface gives

ρ

(
DU

Dt

)
h

+ ∇hp− ρgh = µ(∇2
hU + 2u2) + O(n), −h 6 n 6 0, (9)

where (DU/Dt)h is the tangential fluid acceleration and gh is the acceleration due
to gravity resolved along the coordinate plane tangential to the surface. To lowest
significant order (i.e. neglecting the O(n) terms), all the terms in (9) are independent
of n. One can therefore eliminate ∇hp between (7) and (9), obtaining

2µu2 = ρ

(
DU

Dt

)
h

− ρgh − µ∇2
hU − 2µ∇h(∇h ·U ) + ∇hP − σ∇hκ, (10)
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from which in the limit as n→ −h:

T = T 1 + T 2 + O(h2);

T 1 = µh(3∇h(∇h ·U ) + ∇2
hU ),

T 2 = −h
(
ρ

(
DU

Dt

)
h

− ρgh + ∇hP − σ∇hκ
)
. (11)

Equation (11) gives the shear stress at the lower boundary of the upper fluid.
The second term T 2 in (11) is independent of the viscosity µ of the upper fluid, so

that the viscous tangential stress with which the fluid layer acts on the fluid below
is given by the first term T 1. Comparing (11) with (1), we thus see that the upper
fluid layer behaves as if it were a film with a constitutive relation of type (1), with a
two-dimensional shear viscosity µh and a two-dimensional dilatational viscosity 3µh.
There is also of course a normal force balance at the interface, but we do not need it
to obtain this main result.

It is shown by Jenkins & Jacobs (1997) that provided that the upper fluid layer is
sufficiently thin, the bulk viscosity of the upper fluid affects the damping of linear
surface waves by effectively adding 4µh to the surface-film viscosity. In this case, the
shear and dilatational surface viscosities are added together, since the wave-induced
tangential surface motions are essentially one-dimensional (cf. Miles 1967).
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